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Known

Between objects, relationships exist

An association represents a Has-a-relationship
A human being has two legs
A chair has 4 chair legs
A car has 4 wheels

Also, a Is-a-relationship exists
Apples and pears are fruit species
Students and lecturers are humans
The type defines characteristics for its elements

Every human being has an eye color
Every human being has a hair color
Every human being has a size

Java represents this relationship by inheritance
Parents give their Childs characteristics
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Java Inheritance

Java defines classes in hierarchical relationships
Therefore, classes have a Is-a-relationship with their parent class
The keyword extends shows that a class is derived from another class
Therefore, a class becomes a sub class
The parent class is the super class
The sub class inherits all visible characteristics of the super class
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The implicit base class Object

Classes without the extends-keyword automatically inherit from Object

Object is an implicit super class
Every class inherits either directly or indirectly from java.lang.Object

All visible attributes and methods, like toString(), are inherited
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No Multiple inheritance in Java

Java only allows single inheritance
Behind the extends-keyword, only one super class is allowed
languages like C++, Python, and Perl allow Multiple Inheritance. Why does java
not?

new SubClass().doSomething(); Do what???
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Example Person

Figure 1: A class hierarchy for our school

Students and Lecturers are Humans
with ao a name and an eye color
TeamLeader could have been a sub class of Lecturer
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Example Human

package nl. fontys . pro2 . week1 ;

import java .awt. Color ;

public class Human {
String name ;
Color eyeColor ;

}

package nl. fontys . pro2 . week1 ;

public class Student extends Human {
Number number ;

}
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Example Human

public static void main ( String [] args ) {
Student theStud = new Student ();
theStud . name = " Richard Stallman ";

}

Class Student can use the inherited attributes name and eyeColor

Changes in a super class are automatically represented in sub classes
Therefore, a sub class has a very strong coupling to its super class
Super classes don’t know their sub classes
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Visibility



peekabo:I can see what you can’t
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Visibility

Sub classes inherit all visible characteristics from their super class
public: visible for all classes
package-private: visible for all classes in the same package
private: only visible within class (including contained inner class)
In addition: protected:

protected attributes and methods are inherited by all sub classes
are visible for all classes in the same package

In the visibility sense: public > protected > package-private > private

Protected -protection is weaker than package-private!
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Visibility table

Table 1: Normalized visibility table.

Modifier Class Package Subclass World
public y y y y
protected y y y -

(default) y y - -
private y - - -
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Usage of constructors with inheritance

When a an object is created the following happens: The JVM allocates memory
for the object, then the constructors are called in order of hierarchy, top to
bottom.
In contrast to methods, constructors are not inherited
Sub classes need a constructor to enable objects to be created
Within the constructor, Java automatically invokes the super class
default-constructor
When no constructor has explicitly been defined, the implicit default constructor is
used
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A super constructor

super() invokes the super constructor explicitly
The default constructor is always invoked implicitly
super can invoke parameterized constructors
Mandatory, if super class does not have default constructor

public class Student extends Human {
public Student ( Number number ){ ... }

}

public class StudAssistant extends Student {
public StudAssistant ( Number sNumber ){

super ( sNumber );
}

}
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Summary constructors and methods

Constructors
can’t be abstract, final, native, static or synchronized
don’t have a return value, even not void
are not inherited
Can have any of visibility attributes
this(...) refers to another constructor in the same class
super(...) invokes a constructor of super class

Methods
can be public, protected, package-private, private, abstract, final, native, static or
synchronized
can have return values, or void
Visible methods are inherited
Inherited visibility cannot be changed
this is a reference to the current instance of the class
With super, overridden methods of the superclass can be invoked
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Polymorphism



Static and dynamic types

Seemingly trivial relationships
A Student is a Human
A Lecturer is a Human
A Human is an Object
A Student is a Student

In Java:

Human studentIsHuman = new Student ();
Human lecturerIsHuman = new Lecturer ();
Object humanIsObject = new Human ();
Student studentIsStudent = new Student ();
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Static and Dynamic types

The declared type is the so-called static type
The initialised type is the dynamic type
The declared type or L-Value is configured with their static type. An object knows
its dynamic type.
Variables are treated as being of a static type

Human studHum = new Student ();
System .out. println ( studHum . getName ());
// The following will not work:
System .out. println ( studHum . getSNumber ());
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Static and dynamic types

Variables can not simply be initialised with lesser1 types.
In case of the correct dynamic type, a typecast helps
instanceof verifies dynamic types

Human stud = new Student ();
// next line will not work:
Student stud2 = stud ;
// This one will:
Student stud3 = ( Student ) stud ;
// Because stud has the dynamic type Student
if( stud instanceof Student ){

// instanceof tests the dynamic Typ
}

1less specific
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Override a method

Methods of Super classes are overwritten when
The name and
the list of parameters (number of params and their type, not their name)
and return type
exactly match that of the super classes method

The annotation @Override lets the compiler also check whether a method is
actually and correctly overwritten
The method of the superclass is then ruled out, right?
Example: override the toString() method of Object
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Override a method

makes calling overridden methods possible
You can only reach one level higher with super: Chaining of super keywording at
a deeper inheritance hierarchy is not possible
Super methods are not accessible from the outside. A call to a super....
method can only be made on this, inside the defining class, not any other object.

public class Student extends Human {
...

@Override
public void setName ( String name ) {

if( isNiceName ( name )){
super . setName ( name );

}
}

}
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prohibit method override

The keyword final prohibits overriding.
In classes, thereby prohibiting extension

example final class Integer

for methods, thereby prohibiting that they can be overridden
example: public final wait()2

Quiz: could you come up with a use for a protected final method?

2Defined in this way in java.lang.Object
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Topics
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multiple inheritance of implementation

Example: Parents

Example: Child interfaces
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Polymorphism

Polymorphism is the ability to provide a single interface to entities of different types.

Visible methods of super classes also exist in sub classes
Super classes can predefine implementations, which can be overwritten, if required
We can however be sure the methods exist
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Polymorphism - Example

p u b l i c c l a s s Human e x t e n d s Object {
. . .

@Override
p u b l i c String toString ( ) {

r e t u r n "[ Human :..." ;
}

}

p u b l i c c l a s s Student e x t e n d s Human {
. . .

@Override
p u b l i c String toString ( ) {

r e t u r n "[ Student :..." ;
}

}
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Polymorphism - Example

Student student = new Student ( ) ;
System . out . println ( student ) ;

Human human = new Student ( ) ;
System . out . println ( human ) ;

Object object = new Student ( ) ;
System . out . println ( object ) ;

What will the output look like?
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Polymorphism - Example

During runtime, the method toString() from Student will always be used
In contrast to the compiler, the runtime environment knows the dynamic type
This is called dynamic binding, because the actual type of an object is only
determined at runtime
The method that is the deepest one in the class hierarchy is chosen
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Polymorphism - Example

-name : String
-eyeColor : Color

+toString() : String

Human

-sNumber : Number

+toString() : String

Student

-salary : Double

Lecturer

+toString() : String

Object

At runtime the method that is most specific
is choosen.

Although declared 'deepest' in the class hierarchy, 
it is the first in the list consulted  by the jvm.
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Exceptions on polymorphism

Not all methods are dynamically bound
Only overridden methods participate
Methods which can’t be overridden will bound statically
private, static and final methods fall in this category.
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Abstract classes and methods



Abstract classes

Definition
Two of the three mandatory componentsa of a method declaration comprise the
method signature—the method’s name and the parameter types.

aA throws clause is possible, but optional

Abstract classes can’t be instantiated3

An abstract class can be used as a static (or declaration) type.
Useful, for example for classes which are only used as super class, to provide
signatures for sub classes
The keyword abstract identifies abstract classes
Abstract classes are the opposite of concrete classes
Abstract-ness is only about method declarations. Fields cannot be defined
abstract.
A signature can only occur once in a class defintion, including its inheritance
hierarchy. Rationale: In Java all methods can be called ignoring (and thereby
NOT declaring) the result.

3Not even when none of the methods is abstract
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Abstract classes

Abstract classes are often used in inheritance
They behave like concrete classes
A subclass can extend an abstract class and can be abstract itself again

p u b l i c a b s t r a c t c l a s s Human{
. . .
}

Human stud1 = new Student ( ) ;
Human [ ] humans = new Human [ ] {new Student ( ) , new Lecturer ( ) } ;

Where could abstract classes be used for as well?
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Abstract methods

Methods in abstract classes could also be abstract
They only define a method signature for the sub class
Concrete sub classess have to implement these

p u b l i c a b s t r a c t c l a s s Human e x t e n d s Object { 1
. . .
p r o t e c t e d a b s t r a c t v o i d dress ( ) ;

}

1 the inheritance from Object is implicit and should normally not be included.
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Interfaces

It’s difficult to give classes multiple types by using inheritance
Inheritance is always done in order, Human inherits from Object, Students inherits
from Human, etc.
Sometimes, classes need to have types from different hierarchies

#name : String
#eyeColour : Color

+toString() : String

Human

-sNumber : Number

+toString() : String
+call() : T

Student

+call() : T

<<Interface>>
Callable<T>

+call() : Car

Company

T

T
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Interfaces

Instead of class, interface is used
Methods in interfaces don’t have a body
All methods are automatically abstract and public

Constructors are useless and therefore not allowed
Instance variables are not allowed either, static-variables however are allowed
(automatically final)

p u b l i c i n t e r f a c e Callable<T> {

T call ( ) ;

}
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Interfaces

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable{

// ...
p u b l i c v o i d call ( ) { . . . }

}

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable , Annoyable{
// ...

p u b l i c v o i d call ( ) { . . . }

p u b l i c StressLevel annoy ( doub l e degree ) { . . . }
}
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Interfaces
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Interfaces

Classes can implement multiple interfaces
Interfaces can extend zero, one or multiple other interfaces
They allow objects to act in different roles
A powerful object can be reduced to a single method
Usage analogous to usage of abstract classes

Callable callable = new Student ( ) ;
Human human = ( Student ) callable ;
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Interfaces

What will happen now?
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Interfaces as specification

Separation of functionality and implementation
Clients communicate implementation-independent
Alternative implementations can be used

T

ArrayList

T

«interface»
List

T

LinkedList
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Interfaces vs. Abstract classes

p u b l i c i n t e r f a c e Callable<T> {

T call ( ) ;

}

p u b l i c a b s t r a c t c l a s s Callable<T> {

a b s t r a c t T call ( ) ;

}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 40/44



Java8



Java8 interfaces: default and static methods

To be able to extend of the framework without breaking existing interfaces and
implementing classes, Java 8 introduces a few new concepts.

static methods (implementations) in interfaces.
default method (implementations!) in interfaces.

It allows the extension of interfaces without breaking existing implementing
classes.
The static methods are typically helpers for the default methods.
It also implies multiple inheritance for said default methods.
If a conflict is possible, the implementation programmer must help the compiler
by specifying which default variant method is to be taken.
The first use case of this extension is the stream framework, introduced in Java 8,
in combination with λ expression.
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multiple I.



Multiple inheritance example, parents

i n t e r f a c e AnInterface {

d e f a u l t String getName ( ) {
r e t u r n "An" ;

}
}

i n t e r f a c e BnInterface {

d e f a u l t String getName ( ) {
r e t u r n "Bn" ;

}
}
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Multiple inheritance example, child

i n t e r f a c e CnInterface e x t e n d s AnInterface ,
BnInterface {

// resolve which super to use.
// also works in implementing classes
@Override
d e f a u l t String getName ( ) {

r e t u r n AnInterface . s u p e r . getName ( ) ;
}

}

Note that a class implementing (either4) one of the inherited interfaces-methods with
the same signature must also specify which variant to select, using the same
construction as above.

See DEMO

4Because signatur duplication is not allowed, exactly one must be choosen.
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Conclusion



Not all understood? For next time read:

Java Tutorial on Polymorphims
Java 8 tutorial on default methods http:
//docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Questions?
Questions or remarks?
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