Inheritance and Polymorphism

Richard van den Ham
Pieter van den Hombergh
Linda Urselmans

January 28, 2019

Fontys Hogeschool voor Techniek en Logistiek

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 1/44

Topics

Java Inheritance

Class hierarchy - An example

Visibility
| can see what you can't

Constructors and inheritance

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 2/a4

Known

@ Between objects, relationships exist

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 3/a4

Known

@ Between objects, relationships exist Car has
1

.. . . ——1 4.n
@ An association represents a Has-a-relationship

e A human being has two legs
o A chair has 4 chair legs
e A car has 4 wheels

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 3/a4

Known

@ Between objects, relationships exist
@ An association represents a Has-a-relationship

e A human being has two legs
o A chair has 4 chair legs
e A car has 4 wheels

@ Also, a Is-a-relationship exists

Apples and pears are fruit species
Students and lecturers are humans
The type defines characteristics for its elements

@ Every human being has an eye color
@ Every human being has a hair color
@ Every human being has a size

Java represents this relationship by inheritance

Parents give their Childs characteristics

SEBI VENLO/FHTenL Inheritance and Polymorphism

——— 4..n 1

Human

S—

| Student | | Teacher |

A
Fontys

Hogescholan

January 28, 2019 3/44

Java Inheritance

@ Java defines classes in hierarchical relationships

@ Therefore, classes have a Is-a-relationship with their parent class
@ The keyword extends shows that a class is derived from another class
@ Therefore, a class becomes a sub class

@ The parent class is the super class

@ The sub class inherits all visible characteristics of the super class

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 4/aa

The implicit base class

@ Classes without the extends-keyword automatically inherit from Object
@ Object is an implicit super class
o Every class inherits either directly or indirectly from java.lang.0bject

@ All visible attributes and methods, like tostring(), are inherited

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 5/44

No Multiple inheritance in Java

@ Java only allows single inheritance
@ Behind the extends-keyword, only one super class is allowed

o languages like C++-, Python, and Perl allow Multiple Inheritance. Why does java
not?

ClassA ClassB
+doSomething() +doSomething()

11

SubClass

@ new SubClass().doSomething(); Do what??? A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019

Example Person

Human

#name : String
#eyeColor : Color

T

Student

Lecturer

-sNumber : Number

-salary : Double

Figure 1: A class hierarchy for our school

@ Students and Lecturers are Humans

@ with ao a name and an eye color

@ TeamLeader could have been a sub class of Lecturer

SEBI VENLO/FHTenL

Inheritance and Polymorphism

January 28, 2019

A
Fontys

Hogescholan

7/44

Example Human

package nl.fontys.pro2.weekl;
import java.awt.Color;
public class Human {

String name;
Color eyeColor;

package nl.fontys.pro2.weekl;

public class Student extends Human {

Number number;

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 8/44

SE W [T E]]

public static void main(String[] args) {
Student theStud = new Student ();

theStud.name = "Richard Stallman";
}
@ Class Student can use the inherited attributes name and eyeColor
@ Changes in a super class are automatically represented in sub classes

@ Therefore, a sub class has a very strong coupling to its super class

Super classes don’t know their sub classes

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 9/44

Visibility

peekabo:l can see what you can’t

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 10/44

Visibility

@ Sub classes inherit all visible characteristics from their super class

public: visible for all classes

package-private: visible for all classes in the same package

private: only visible within class (including contained inner class)

In addition: protected:

e protected attributes and methods are inherited by all sub classes
e are visible for all classes in the same package

In the visibility sense: public > protected > package-private > private

@ Protected -protection is weaker than package-private!

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 11/44

Visibility table

Modifier

public

protected
(default)

private

SEBI VENLO/FHTenL

Table 1: Normalized visibility table.

Class
y

Yy
y
y

Inheritance and Polymorphism

Package

y
y
y

Subclass

Yy
y

January 28, 2019

World

nnnnnnnnnnn

Usage of constructors with inheritance

@ When a an object is created the following happens: The JVM allocates memory
for the object, then the constructors are called in order of hierarchy, top to
bottom.

@ In contrast to methods, constructors are not inherited

@ Sub classes need a constructor to enable objects to be created

@ Within the constructor, Java automatically invokes the super class

default-constructor

@ When no constructor has explicitly been defined, the implicit default constructor is
used

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 13/44

A super constructor

super () invokes the super constructor explicitly

The default constructor is always invoked implicitly

@ super can invoke parameterized constructors

Mandatory, if super class does not have default constructor

public class Student extends Human {
public Student (Number number){ ... }

public class StudAssistant extends Student {
public StudAssistant (Number sNumber){
super (sNumber) ;

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019

A
Fontys

Hogescholan

14/44

Summary constructors and methods

@ Constructors

e can't be abstract, final, native, static or synchronized
e don't have a return value, even not void
e are not inherited
e Can have any of visibility attributes
e this(...) refers to another constructor in the same class
e super(...) invokes a constructor of super class
@ Methods
e can be public, protected, package-private, private, abstract, final, native, static or
synchronized
e can have return values, or void
o Visible methods are inherited
e Inherited visibility cannot be changed
e this is a reference to the current instance of the class
e With super, overridden methods of the superclass can be invoked (]:%ntys

SEBI VENLO/FHTenL

Hogescholan

Inheritance and Polymorphism January 28, 2019 15/44

Polymorphism, abstract classes and interfaces

Part Il

Richard van den Ham
Pieter van den Hombergh
Linda Urselmans

January 28, 2019

Fontys Hogeschool voor Techniek en Logistiek

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il

January 28, 2019

Polymorphism

Static and dynamic types

@ Seemingly trivial relationships
e A Student is a Human
e A Lecturer is a Human
e A Human is an Object
e A Student is a Student

o In Java:
Human studentIsHuman = new Student ();
Human lecturerIsHuman = new Lecturer();
Object humanIsObject = new Human () ;
Student studentIsStudent = new Student ();

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 17/44

Static and Dynamic types

@ The declared type is the so-called static type
@ The initialised type is the dynamic type

@ The declared type or L-Value is configured with their static type. An object knows
its dynamic type.

@ Variables are treated as being of a static type

Human studHum = new Student () ;
System.out.println(studHum.getName ());

// The following will not work:
System.out.println (studHum.getSNumber ()) ;

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 18/44

Static and dynamic types

@ Variables can not simply be initialised with lesser® types.

@ In case of the correct dynamic type, a typecast helps

@ instanceof verifies dynamic types

// next
Student
// This
Student

if (stud

Human stud = new Student ();

line will not work:
stud2 = stud;

one will:

stud3 = (Student) stud;

// Because stud has the dynamic type Student

instanceof Student){

// instanceof tests the dynamic Typ

lless specific

SEBI VENLO/FHTenL

Polymorphism, abstract classes and interfacesPart |1 January 28, 2019

A
Fontys

Hogescholan

19/44

Override a method

@ Methods of Super classes are overwritten when
e The name and
o the list of parameters (number of params and their type, not their name)
e and return type
e exactly match that of the super classes method
@ The annotation eoverride lets the compiler also check whether a method is
actually and correctly overwritten

@ The method of the superclass is then ruled out, right?

@ Example: override the toString() method of Object

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 20/44

Override a method

@ makes calling overridden methods possible
@ You can only reach one level higher with super: Chaining of super keywording at
a deeper inheritance hierarchy is not possible

@ Super methods are not accessible from the outside. A call to a super. ...
method can only be made on this, inside the defining class, not any other object.

public class Student extends Human {

@0verride
public void setName (String name) {
if (isNiceName (name)) {
super .setName (name) ;

Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 21/44

prohibit method override

@ The keyword final prohibits overriding.
e In classes, thereby prohibiting extension
@ example final class Integer
e for methods, thereby prohibiting that they can be overridden

o example: public final wait()?

@ Quiz: could you come up with a use for a protected final method?

A
Fontys

2Defined in this way in java.lang.Object

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 22/44

Polymorphism
Static and Dynamic Types
Overridding Methods

Abstract classes and methods

Interfaces
Java8 interfaces: default and static

multiple inheritance of implementation
Example: Parents

Example: Child interfaces

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 23/44

Polymorphism

Polymorphism is the ability to provide a single interface to entities of different types.

@ Visible methods of super classes also exist in sub classes
@ Super classes can predefine implementations, which can be overwritten, if required

@ We can however be sure the methods exist

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 24/44

Polymorphism - Example

public class Human extends Object {

@Override
public String toString(){

return "[Human:...";

public class Student extends Human {

@Override
public String toString(){
return "[Student:...";

Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart |1 January 28, 2019 25/44

Polymorphism - Example

Student student = new Student();
System.out.println(student);

Human human = new Student();
System.out.println(human);

Object object = new Student();
System.out.println(object);

What will the output look like?

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 26/44

Polymorphism - Example

@ During runtime, the method toString() from Student will always be used

@ In contrast to the compiler, the runtime environment knows the dynamic type

@ This is called dynamic binding, because the actual type of an object is only
determined at runtime

@ The method that is the deepest one in the class hierarchy is chosen

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 27/44

Polymorphism - Example

Object
+toString() : String

I

Human
-name : String
-eyeColor : Color

+toString() : String

i

Lecturer Student
-salary : Double -sNumber : Number
+toString() : String

At runtime the method that is most specific
is choosen.
Although declared 'deepest' in the class hierarchy, A
it is the first in the list consulted by the jvm. Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart |1 January 28, 2019 28/44

Exceptions on polymorphism

@ Not all methods are dynamically bound
e Only overridden methods participate
e Methods which can't be overridden will bound statically

e private, static and final methods fall in this category.

Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il

January 28, 2019 29/44

Abstract classes and methods

Abstract classes

Definition
Two of the three mandatory components? of a method declaration comprise the
method signature—the method’s name and the parameter types.

?A throws clause is possible, but optional

@ Abstract classes can't be instantiated?

@ An abstract class can be used as a static (or declaration) type.

o Useful, for example for classes which are only used as super class, to provide
signatures for sub classes

@ The keyword abstract identifies abstract classes

@ Abstract classes are the opposite of concrete classes

@ Abstract-ness is only about method declarations. Fields cannot be defined
abstract.

@ A signature can only occur once in a class defintion, including its inheritance cfg,,tys

hierarchy. Rationale: In Java all methods can be called ignoring (and thereby

SEBI \/ENLO,/FHT&HL'\ /A== Polymorphism, abstract classes and interfacesPart Il January 28, 2019 30/44

11 N .1 TSy B

Abstract classes

@ Abstract classes are often used in inheritance

@ They behave like concrete classes

@ A subclass can extend an abstract class and can be abstract itself again

public abstract class Human{

Human studl = new Student();
Human [] humans = new Human|[] {new Student (), new Lecturer() };

Where could abstract classes be used for as well?

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 31/44

Abstract methods

@ Methods in abstract classes could also be abstract
@ They only define a method signature for the sub class

@ Concrete sub classess have to implement these

public abstract class Human extends Object { @

protected abstract void dress();

@ the inheritance from Object is implicit and should normally not be included.

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 32/44

Interfaces

e It's difficult to give classes multiple types by using inheritance

@ Inheritance is always done in order, Human inherits from Object, Students inherits
from Human, etc.

@ Sometimes, classes need to have types from different hierarchies

il
1T
Human <<Interface>>
#name : String Callable<T>
#eyeColour : Color +call(): T
+toString() : String :‘ﬁ")
I I
I I
| I 1
I (] I
! [!
Student
-sNumber : Number Company

+toString() : String +eall() : Car

+call(): T

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 33/44

Interfaces

@ Instead of class, interface is used

@ Methods in interfaces don't have a body
@ All methods are automatically abstract and public
@ Constructors are useless and therefore not allowed

@ Instance variables are not allowed either, static-variables however are allowed
(automatically final)

public interface Callable<T> {

T call();

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 34/44

Interfaces

imple
D1 oo
public void call()

public class Student extends Human

ments Callable{

(...}

implements Callabl
Nl oo

public void call()

public class Student extends Human

e, Annoyable{

(..}

public StressLevel annoy(double degree)

SEBI VENLO/FHTenL

Polymorphism, abstract classes and interfacesPart |1

January 28, 2019

Fontys

Hogescholan

35/44

Interfaces

public class Student extends Human
implements Callable{
70 oo
public void call() {...}

public class Student extends Human
implements Callable, Annoyable{
A0 oo e

public void call() {...}

public StressLevel annoy(double degree) {...}

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 36/44

Interfaces

@ Classes can implement multiple interfaces

Interfaces can extend zero, one or multiple other interfaces

They allow objects to act in different roles

A powerful object can be reduced to a single method

Usage analogous to usage of abstract classes

Callable callable = new Student();
Human human = (Student) callable;

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 37/44

Interfaces

<<Interface>> <<Interface>>
Likeable Hateable
+do() : void +do() : void

JAN JAN

Janitor
+do() : void

What will happen now?

Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart |1 January 28, 2019 38/44

Interfaces as specification

@ Separation of functionality and implementation

@ Clients communicate implementation-independent

@ Alternative implementations can be used

SEBI VENLO/FHTenL

«interface»

List
s
mTTT T e - al
| . |
L | | L
ArrayList LinkedList

Polymorphism, abstract classes and interfacesPart |1

January 28, 2019

A
Fontys

Hogescholan

39/44

Interfaces vs. Abstract classes

public interface Callable<T> {

T call();

public abstract class Callable<T> {

abstract T call();

Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart |1 January 28, 2019 40/44

Java8

Java8 interfaces: default and static methods

To be able to extend of the framework without breaking existing interfaces and
implementing classes, Java 8 introduces a few new concepts.

@ static methods (implementations) in interfaces.

@ default method (implementations!) in interfaces.

o It allows the extension of interfaces without breaking existing implementing
classes.

@ The static methods are typically helpers for the default methods.

@ It also implies multiple inheritance for said default methods.

@ If a conflict is possible, the implementation programmer must help the compiler
by specifying which default variant method is to be taken.

@ The first use case of this extension is the stream framework, introduced in Java 8,
in combination with \ expression. g

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 41/44

multiple I.

Multiple inheritance example, parents

interface AnInterface {

default String getName() {
return "An";

interface BnInterface {

default String getName() {
return "Bn";

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il

January 28, 2019

Fontys

Hogescholan

42/44

Multiple inheritance example, child

interface CnInterface extends AnInterface,
BnInterface {

// resolve which super to use.
// also works in implementing classes
@O0verride
default String getName() {
return AnInterface.super.getName();

Note that a class implementing (either*) one of the inherited interfaces-methods with
the same signature must also specify which variant to select, using the same

construction as above.

See DEMO
A
Fontys

Hogescholan

“*Because signatur duplication is not allowed, exactly one must be choosen.

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart |1 January 28, 2019 43/44

Conclusion

Not all understood? For next time read:

@ Java Tutorial on Polymorphims

@ Java 8 tutorial on default methods http:
//docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Questions?
Questions or remarks? J

A
Fontys

Hogescholan

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart Il January 28, 2019 44/44

http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

	Inheritance
	Java Inheritance
	Class hierarchy - An example

	Visibility
	I can see what you can't
	Constructors and inheritance

	Polymorphism
	Polymorphism
	Static and Dynamic Types
	Overridding Methods

	Abstract classes and methods
	Interfaces

	Java8 interfaces: default and static
	multiple inheritance of implementation
	Example: Parents
	Example: Child interfaces

	Conclusion

