
Inheritance and Polymorphism

Richard van den Ham
Pieter van den Hombergh
Linda Urselmans
January 28, 2019

Fontys Hogeschool voor Techniek en Logistiek

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 1/44

Topics

Java Inheritance

Class hierarchy - An example

Visibility

I can see what you can’t

Constructors and inheritance

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 2/44

Known

Between objects, relationships exist

An association represents a Has-a-relationship
A human being has two legs
A chair has 4 chair legs
A car has 4 wheels

Also, a Is-a-relationship exists
Apples and pears are fruit species
Students and lecturers are humans
The type defines characteristics for its elements

Every human being has an eye color
Every human being has a hair color
Every human being has a size

Java represents this relationship by inheritance
Parents give their Childs characteristics

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 3/44

Known

Between objects, relationships exist
An association represents a Has-a-relationship

A human being has two legs
A chair has 4 chair legs
A car has 4 wheels

Also, a Is-a-relationship exists
Apples and pears are fruit species
Students and lecturers are humans
The type defines characteristics for its elements

Every human being has an eye color
Every human being has a hair color
Every human being has a size

Java represents this relationship by inheritance
Parents give their Childs characteristics

WheelCar h a s
4..n 1

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 3/44

Known

Between objects, relationships exist
An association represents a Has-a-relationship

A human being has two legs
A chair has 4 chair legs
A car has 4 wheels

Also, a Is-a-relationship exists
Apples and pears are fruit species
Students and lecturers are humans
The type defines characteristics for its elements

Every human being has an eye color
Every human being has a hair color
Every human being has a size

Java represents this relationship by inheritance
Parents give their Childs characteristics

WheelCar h a s
4..n 1

Teacher

Human

Student

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 3/44

Java Inheritance

Java defines classes in hierarchical relationships
Therefore, classes have a Is-a-relationship with their parent class
The keyword extends shows that a class is derived from another class
Therefore, a class becomes a sub class
The parent class is the super class
The sub class inherits all visible characteristics of the super class

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 4/44

The implicit base class Object

Classes without the extends-keyword automatically inherit from Object

Object is an implicit super class
Every class inherits either directly or indirectly from java.lang.Object

All visible attributes and methods, like toString(), are inherited

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 5/44

No Multiple inheritance in Java

Java only allows single inheritance
Behind the extends-keyword, only one super class is allowed
languages like C++, Python, and Perl allow Multiple Inheritance. Why does java
not?

new SubClass().doSomething(); Do what???

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 6/44

Example Person

Figure 1: A class hierarchy for our school

Students and Lecturers are Humans
with ao a name and an eye color
TeamLeader could have been a sub class of Lecturer

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 7/44

Example Human

package nl. fontys . pro2 . week1 ;

import java .awt. Color ;

public class Human {
String name ;
Color eyeColor ;

}

package nl. fontys . pro2 . week1 ;

public class Student extends Human {
Number number ;

}

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 8/44

Example Human

public static void main (String [] args) {
Student theStud = new Student ();
theStud . name = " Richard Stallman ";

}

Class Student can use the inherited attributes name and eyeColor

Changes in a super class are automatically represented in sub classes
Therefore, a sub class has a very strong coupling to its super class
Super classes don’t know their sub classes

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 9/44

Visibility

peekabo:I can see what you can’t

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 10/44

Visibility

Sub classes inherit all visible characteristics from their super class
public: visible for all classes
package-private: visible for all classes in the same package
private: only visible within class (including contained inner class)
In addition: protected:

protected attributes and methods are inherited by all sub classes
are visible for all classes in the same package

In the visibility sense: public > protected > package-private > private

Protected -protection is weaker than package-private!

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 11/44

Visibility table

Table 1: Normalized visibility table.

Modifier Class Package Subclass World
public y y y y
protected y y y -

(default) y y - -
private y - - -

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 12/44

Usage of constructors with inheritance

When a an object is created the following happens: The JVM allocates memory
for the object, then the constructors are called in order of hierarchy, top to
bottom.
In contrast to methods, constructors are not inherited
Sub classes need a constructor to enable objects to be created
Within the constructor, Java automatically invokes the super class
default-constructor
When no constructor has explicitly been defined, the implicit default constructor is
used

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 13/44

A super constructor

super() invokes the super constructor explicitly
The default constructor is always invoked implicitly
super can invoke parameterized constructors
Mandatory, if super class does not have default constructor

public class Student extends Human {
public Student (Number number){ ... }

}

public class StudAssistant extends Student {
public StudAssistant (Number sNumber){

super (sNumber);
}

}

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 14/44

Summary constructors and methods

Constructors
can’t be abstract, final, native, static or synchronized
don’t have a return value, even not void
are not inherited
Can have any of visibility attributes
this(...) refers to another constructor in the same class
super(...) invokes a constructor of super class

Methods
can be public, protected, package-private, private, abstract, final, native, static or
synchronized
can have return values, or void
Visible methods are inherited
Inherited visibility cannot be changed
this is a reference to the current instance of the class
With super, overridden methods of the superclass can be invoked

SEBI VENLO/FHTenL Inheritance and Polymorphism January 28, 2019 15/44

Polymorphism, abstract classes and interfaces
Part II

Richard van den Ham
Pieter van den Hombergh
Linda Urselmans
January 28, 2019

Fontys Hogeschool voor Techniek en Logistiek

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 16/44

Polymorphism

Static and dynamic types

Seemingly trivial relationships
A Student is a Human
A Lecturer is a Human
A Human is an Object
A Student is a Student

In Java:

Human studentIsHuman = new Student ();
Human lecturerIsHuman = new Lecturer ();
Object humanIsObject = new Human ();
Student studentIsStudent = new Student ();

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 17/44

Static and Dynamic types

The declared type is the so-called static type
The initialised type is the dynamic type
The declared type or L-Value is configured with their static type. An object knows
its dynamic type.
Variables are treated as being of a static type

Human studHum = new Student ();
System .out. println (studHum . getName ());
// The following will not work:
System .out. println (studHum . getSNumber ());

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 18/44

Static and dynamic types

Variables can not simply be initialised with lesser1 types.
In case of the correct dynamic type, a typecast helps
instanceof verifies dynamic types

Human stud = new Student ();
// next line will not work:
Student stud2 = stud ;
// This one will:
Student stud3 = (Student) stud ;
// Because stud has the dynamic type Student
if(stud instanceof Student){

// instanceof tests the dynamic Typ
}

1less specific
SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 19/44

Override a method

Methods of Super classes are overwritten when
The name and
the list of parameters (number of params and their type, not their name)
and return type
exactly match that of the super classes method

The annotation @Override lets the compiler also check whether a method is
actually and correctly overwritten
The method of the superclass is then ruled out, right?
Example: override the toString() method of Object

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 20/44

Override a method

makes calling overridden methods possible
You can only reach one level higher with super: Chaining of super keywording at
a deeper inheritance hierarchy is not possible
Super methods are not accessible from the outside. A call to a super....
method can only be made on this, inside the defining class, not any other object.

public class Student extends Human {
...

@Override
public void setName (String name) {

if(isNiceName (name)){
super . setName (name);

}
}

}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 21/44

prohibit method override

The keyword final prohibits overriding.
In classes, thereby prohibiting extension

example final class Integer

for methods, thereby prohibiting that they can be overridden
example: public final wait()2

Quiz: could you come up with a use for a protected final method?

2Defined in this way in java.lang.Object
SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 22/44

Topics

Polymorphism

Static and Dynamic Types

Overridding Methods

Abstract classes and methods

Interfaces

Java8 interfaces: default and static

multiple inheritance of implementation

Example: Parents

Example: Child interfaces

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 23/44

Polymorphism

Polymorphism is the ability to provide a single interface to entities of different types.

Visible methods of super classes also exist in sub classes
Super classes can predefine implementations, which can be overwritten, if required
We can however be sure the methods exist

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 24/44

Polymorphism - Example

p u b l i c c l a s s Human e x t e n d s Object {
. . .

@Override
p u b l i c String toString () {

r e t u r n "[Human :..." ;
}

}

p u b l i c c l a s s Student e x t e n d s Human {
. . .

@Override
p u b l i c String toString () {

r e t u r n "[Student :..." ;
}

}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 25/44

Polymorphism - Example

Student student = new Student () ;
System . out . println (student) ;

Human human = new Student () ;
System . out . println (human) ;

Object object = new Student () ;
System . out . println (object) ;

What will the output look like?

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 26/44

Polymorphism - Example

During runtime, the method toString() from Student will always be used
In contrast to the compiler, the runtime environment knows the dynamic type
This is called dynamic binding, because the actual type of an object is only
determined at runtime
The method that is the deepest one in the class hierarchy is chosen

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 27/44

Polymorphism - Example

-name : String
-eyeColor : Color

+toString() : String

Human

-sNumber : Number

+toString() : String

Student

-salary : Double

Lecturer

+toString() : String

Object

At runtime the method that is most specific
is choosen.

Although declared 'deepest' in the class hierarchy,
it is the first in the list consulted by the jvm.

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 28/44

Exceptions on polymorphism

Not all methods are dynamically bound
Only overridden methods participate
Methods which can’t be overridden will bound statically
private, static and final methods fall in this category.

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 29/44

Abstract classes and methods

Abstract classes

Definition
Two of the three mandatory componentsa of a method declaration comprise the
method signature—the method’s name and the parameter types.

aA throws clause is possible, but optional

Abstract classes can’t be instantiated3

An abstract class can be used as a static (or declaration) type.
Useful, for example for classes which are only used as super class, to provide
signatures for sub classes
The keyword abstract identifies abstract classes
Abstract classes are the opposite of concrete classes
Abstract-ness is only about method declarations. Fields cannot be defined
abstract.
A signature can only occur once in a class defintion, including its inheritance
hierarchy. Rationale: In Java all methods can be called ignoring (and thereby
NOT declaring) the result.

3Not even when none of the methods is abstract

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 30/44

Abstract classes

Abstract classes are often used in inheritance
They behave like concrete classes
A subclass can extend an abstract class and can be abstract itself again

p u b l i c a b s t r a c t c l a s s Human{
. . .
}

Human stud1 = new Student () ;
Human [] humans = new Human [] {new Student () , new Lecturer () } ;

Where could abstract classes be used for as well?

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 31/44

Abstract methods

Methods in abstract classes could also be abstract
They only define a method signature for the sub class
Concrete sub classess have to implement these

p u b l i c a b s t r a c t c l a s s Human e x t e n d s Object { 1
. . .
p r o t e c t e d a b s t r a c t v o i d dress () ;

}

1 the inheritance from Object is implicit and should normally not be included.

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 32/44

Interfaces

It’s difficult to give classes multiple types by using inheritance
Inheritance is always done in order, Human inherits from Object, Students inherits
from Human, etc.
Sometimes, classes need to have types from different hierarchies

#name : String
#eyeColour : Color

+toString() : String

Human

-sNumber : Number

+toString() : String
+call() : T

Student

+call() : T

<<Interface>>
Callable<T>

+call() : Car

Company

T

T

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 33/44

Interfaces

Instead of class, interface is used
Methods in interfaces don’t have a body
All methods are automatically abstract and public

Constructors are useless and therefore not allowed
Instance variables are not allowed either, static-variables however are allowed
(automatically final)

p u b l i c i n t e r f a c e Callable<T> {

T call () ;

}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 34/44

Interfaces

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable{

// ...
p u b l i c v o i d call () { . . . }

}

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable , Annoyable{
// ...

p u b l i c v o i d call () { . . . }

p u b l i c StressLevel annoy (doub l e degree) { . . . }
}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 35/44

Interfaces

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable{

// ...
p u b l i c v o i d call () { . . . }

}

p u b l i c c l a s s Student e x t e n d s Human
imp lements Callable , Annoyable{
// ...

p u b l i c v o i d call () { . . . }

p u b l i c StressLevel annoy (doub l e degree) { . . . }
}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 36/44

Interfaces

Classes can implement multiple interfaces
Interfaces can extend zero, one or multiple other interfaces
They allow objects to act in different roles
A powerful object can be reduced to a single method
Usage analogous to usage of abstract classes

Callable callable = new Student () ;
Human human = (Student) callable ;

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 37/44

Interfaces

What will happen now?

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 38/44

Interfaces as specification

Separation of functionality and implementation
Clients communicate implementation-independent
Alternative implementations can be used

T

ArrayList

T

«interface»
List

T

LinkedList

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 39/44

Interfaces vs. Abstract classes

p u b l i c i n t e r f a c e Callable<T> {

T call () ;

}

p u b l i c a b s t r a c t c l a s s Callable<T> {

a b s t r a c t T call () ;

}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 40/44

Java8

Java8 interfaces: default and static methods

To be able to extend of the framework without breaking existing interfaces and
implementing classes, Java 8 introduces a few new concepts.

static methods (implementations) in interfaces.
default method (implementations!) in interfaces.

It allows the extension of interfaces without breaking existing implementing
classes.
The static methods are typically helpers for the default methods.
It also implies multiple inheritance for said default methods.
If a conflict is possible, the implementation programmer must help the compiler
by specifying which default variant method is to be taken.
The first use case of this extension is the stream framework, introduced in Java 8,
in combination with λ expression.

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 41/44

multiple I.

Multiple inheritance example, parents

i n t e r f a c e AnInterface {

d e f a u l t String getName () {
r e t u r n "An" ;

}
}

i n t e r f a c e BnInterface {

d e f a u l t String getName () {
r e t u r n "Bn" ;

}
}

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 42/44

Multiple inheritance example, child

i n t e r f a c e CnInterface e x t e n d s AnInterface ,
BnInterface {

// resolve which super to use.
// also works in implementing classes
@Override
d e f a u l t String getName () {

r e t u r n AnInterface . s u p e r . getName () ;
}

}

Note that a class implementing (either4) one of the inherited interfaces-methods with
the same signature must also specify which variant to select, using the same
construction as above.

See DEMO

4Because signatur duplication is not allowed, exactly one must be choosen.
SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 43/44

Conclusion

Not all understood? For next time read:

Java Tutorial on Polymorphims
Java 8 tutorial on default methods http:
//docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Questions?
Questions or remarks?

SEBI VENLO/FHTenL Polymorphism, abstract classes and interfacesPart II January 28, 2019 44/44

http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

	Inheritance
	Java Inheritance
	Class hierarchy - An example

	Visibility
	I can see what you can't
	Constructors and inheritance

	Polymorphism
	Polymorphism
	Static and Dynamic Types
	Overridding Methods

	Abstract classes and methods
	Interfaces

	Java8 interfaces: default and static
	multiple inheritance of implementation
	Example: Parents
	Example: Child interfaces

	Conclusion

